- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Groenendijk, Peter (3)
-
Vlam, Mart (3)
-
Abiyu, Abrham (2)
-
Acuña-Soto, Rodolfo (2)
-
Adenesky-Filho, Eduardo (2)
-
Alfaro-Sánchez, Raquel (2)
-
Aragão, José_Roberto Vieira (2)
-
Assis-Pereira, Gabriel (2)
-
Astudillo-Sánchez, Claudia C (2)
-
Babst, Flurin (2)
-
Battipaglia, Giovanna (2)
-
Beeckman, Hans (2)
-
Botosso, Paulo Cesar (2)
-
Bourland, Nils (2)
-
Brienen, Roel (2)
-
Brookhouse, Matthew (2)
-
Bräuning, Achim (2)
-
Buajan, Supaporn (2)
-
Buckley, Brendan M (2)
-
Camarero, J Julio (2)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The strength and persistence of the tropical carbon sink hinges on the long‐term responses of woody growth to climatic variations and increasing CO2. However, the sensitivity of tropical woody growth to these environmental changes is poorly understood, leading to large uncertainties in growth predictions. Here, we used tree ring records from a Southeast Asian tropical forest to constrain ED2.2‐hydro, a terrestrial biosphere model with explicit vegetation demography. Specifically, we assessed individual‐level woody growth responses to historical climate variability and increases in atmospheric CO2(Ca). When forced with historical Ca, ED2.2‐hydro reproduced the magnitude of increases in intercellular CO2concentration (a major determinant of photosynthesis) estimated from tree ring carbon isotope records. In contrast, simulated growth trends were considerably larger than those obtained from tree rings, suggesting that woody biomass production efficiency (WBPE = woody biomass production:gross primary productivity) was overestimated by the model. The estimated WBPE decline under increasing Cabased on model‐data discrepancy was comparable to or stronger than (depending on tree species and size) the observed WBPE changes from a multi‐year mature‐forest CO2fertilization experiment. In addition, we found that ED2.2‐hydro generally overestimated climatic sensitivity of woody growth, especially for late‐successional plant functional types. The model‐data discrepancy in growth sensitivity to climate was likely caused by underestimating WBPE in hot and dry years due to commonly used model assumptions on carbon use efficiency and allocation. To our knowledge, this is the first study to constrain model predictions of individual tree‐level growth sensitivity to Caand climate against tropical tree‐ring data. Our results suggest that improving model processes related to WBPE is crucial to obtain better predictions of tropical forest responses to droughts and increasing Ca. More accurate parameterization of WBPE will likely reduce the stimulation of woody growth by Carise predicted by biosphere models.more » « less
-
Groenendijk, Peter; Babst, Flurin; Trouet, Valerie; Fan, Ze-Xin; Granato-Souza, Daniela; Locosselli, Giuliano Maselli; Mokria, Mulugeta; Panthi, Shankar; Pumijumnong, Nathsuda; Abiyu, Abrham; et al (, Quaternary Science Reviews)Free, publicly-accessible full text available May 1, 2026
-
Zuidema, Pieter A; Groenendijk, Peter; Rahman, Mizanur; Trouet, Valerie; Abiyu, Abrham; Acuña-Soto, Rodolfo; Adenesky-Filho, Eduardo; Alfaro-Sánchez, Raquel; Anholetto, Claudio Roberto; Aragão, José_Roberto Vieira; et al (, Science)Increasing drought pressure under anthropogenic climate change may jeopardize the potential of tropical forests to capture carbon in woody biomass and act as a long-term carbon dioxide sink. To evaluate this risk, we assessed drought impacts in 483 tree-ring chronologies from across the tropics and found an overall modest stem growth decline (2.5% with a 95% confidence interval of 2.2 to 2.7%) during the 10% driest years since 1930. Stem growth declines exceeded 10% in 25% of cases and were larger at hotter and drier sites and for gymnosperms compared with angiosperms. Growth declines generally did not outlast drought years and were partially mitigated by growth stimulation in wet years. Thus, pantropical forest carbon sequestration through stem growth has hitherto shown drought resilience that may, however, diminish under future climate change.more » « lessFree, publicly-accessible full text available July 31, 2026
An official website of the United States government
